Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel?
نویسندگان
چکیده
BACKGROUND Environmental issues, e.g. climate change, fossil resource depletion have triggered ambitious national/regional policies to develop biofuel and bioenergy roles within the overall energy portfolio to achieve decarbonising the global economy and increase energy security. With the 10 % binding target for the transport sector, the Renewable Energy Directive confirms the EU's commitment to renewable transport fuels especially advanced biofuels. Imola is an elite poplar clone crossed from Populus deltoides Bartr. and Populus nigra L. by Research Units for Intensive Wood Production, Agriculture Research Council in Italy. This study examines its suitability for plantation cultivation under short or very short rotation coppice regimes as a potential lignocellulosic feedstock for the production of ethanol as a transport biofuel. A life cycle assessment (LCA) approach was used to model the cradle-to-gate environmental profile of Imola-derived biofuel benchmarked against conventional fossil gasoline. Specific attention was given to analysing the agroecosystem fluxes of carbon and nitrogen occurring in the cultivation of the Imola biomass in the biofuel life cycle using a process-oriented biogeochemistry model (DeNitrification-DeComposition) specifically modified for application to 2G perennial bioenergy crops and carbon and nitrogen cycling. RESULTS Our results demonstrate that carbon and nitrogen cycling in perennial crop-soil ecosystems such as this example can be expected to have significant effects on the overall environmental profiles of 2G biofuels. In particular, soil carbon accumulation in perennial biomass plantations is likely to be a significant component in the overall greenhouse gas balance of future biofuel and other biorefinery products and warrants ongoing research and data collection for LCA models. We conclude that bioethanol produced from Imola represents a promising alternative transport fuel offering some savings ranging from 35 to 100 % over petrol in global warming potential, ozone depletion and photochemical oxidation impact categories. CONCLUSIONS Via comparative analyses for Imola-derived bioethanol across potential supply chains, we highlight priority issues for potential improvement in 2G biofuel profiling. Advanced clones of poplar such as Imola for 2G biofuel production in Italy as modelled here show potential to deliver an environmentally sustainable lignocellulosic biorefinery industry and accelerate advanced biofuel penetration in the transport sector.
منابع مشابه
Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union
BACKGROUND The European Union has made it a strategic objective to develop its biofuels market in order to minimize greenhouse gas (GHG) emissions, to help mitigate climate change and to address energy insecurity within the transport sector. Despite targets set at national and supranational levels, lignocellulosic bioethanol production has yet to be widely commercialized in the European Union. ...
متن کاملBiochemical Processes for Generating Fuels and Commodity Chemicals from Lignocellulosic Biomass
Fuels and chemicals derived from biomass are regarded as an environmentally friendly alternative to petroleum based products. The concept of using plant material as a source for fuels and commodity chemicals has been embraced by governments to alleviate dependence on the volatile petroleum market. This trend is driven not only by economics but also by social and political factors. Global warmin...
متن کاملThe EnergyPoplar project
Energy Poplar (Enhancing Poplar Traits for Energy Applications) is an EC Seventh Framework Programme project aimed at further improving poplar trees as an energy crop. The work is directed to understand and improve traits such as yield and wood properties coupled to Bioethanol production. The project also addresses environmental and economical sustainability questions. The final goal of ENERGYP...
متن کاملGenetic engineering approaches to improve bioethanol production from maize.
Biofuels such as bioethanol are becoming a viable alternative to fossil fuels. Utilizing agricultural biomass for the production of biofuel has drawn much interest in many science and engineering disciplines. As one of the major crops, maize offers promise in this regard. Compared to other crops with biofuel potential, maize can provide both starch (seed) and cellulosic (stover) material for bi...
متن کاملHydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment
BACKGROUND Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platfor...
متن کامل